The reduction of ervincinine with zinc in methanolic sulfuric acid gave dihydroervincinine $C_{22}H_{28}O_4N_2$, mol. wt. 384 (by mass spectrometry), mp 206.5°-207.5° C (ether). UV spectrum: λ_{max} (ethanol), 245, 304 m μ (log ϵ 4.06, 4.02), which is characteristic of indoline bases.

The NMR spectrum of ervinicinine exhibited signals of an ethyl group ($\delta = 0.61$ ppm), of the six protons of two methoxy groups ($\delta = 3.71$ ppm, singlet), of three aromatic protons ($\delta = 6.34-7.01$ ppm), and of an NH group ($\delta = 8.89$ ppm, singlet). The mass spectrum of ervincinine is very similar to that of lochnerinine [4], differing only by the low intensity of the peaks with m/e 138 and 108. The IR spectra of the base lacks a band in the 2700-2800 cm⁻¹ region, showing cis-orientation of the hydrogen in relation to the unshared pair of electrons of the nitrogen atom N(b).

On the basis of the data presented, a structure is proposed for ervincinine which differs from that of lochnerinine by the configuration of the hydrogen at C_{19} .

REFERENCES

- 1. M. A. Kuchenkova, P. Kh. Yuldashev, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 3, 65, 1967.
- 2. D. A. Rakhimov, V. M. Malikov, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 3, 354, 1967.
 - 3. A. Chatterjee, B. Mukherjee, and A. B. Ray, Tetrah. Let., 3633, 1965.
 - 4. B. K. Moza et al., Lloydia, 4, 416, 1964.

18 April 1968

Institute of the Chemistry Plant Substances AS UzSSR

UDC 547.944/945

STRUCTURE AND CONFIGURATION OF PETILIDINE

R. N. Nuriddinov, B. Babaev, S. Yu. Yunusov

Khimiya Prirodnykh Soedinenii, Vol. 4, No. 5, pp. 332-333, 1968

From the acetonic mother liquors from petilinine [1] we have isolated a new alkaloid, petilidine (I), with mp 265°-266° C (acetone—methanol (2:1)), $[\alpha]_D$ -15.5° (c 1.2; methanol), composition $C_{27}H_{45}O_2N$, mol. wt. 415 (mass spectrum). In a thin layer of Al_2O_3 and $CaSO_4$ (9:1), R_f 0.19 in the chloroform—benzene—methanol (10:5:0.5) system. The alkaloid forms a hydrochloride with mp 273°-274° C and a hydrobromide with mp 310°-312° C. IR spectrum of peptilidine: ν_{max} 3300, 1055 (-OH), 2950-2860, 1450 (-CH₃), 2750 cm⁻¹ (trans-quinolizidine). A mixture of petilidine with petilinine melted at 235°-246° C.

Chemical Shifts, 7

Substance	(S), 3H,	(D), 3H,	(D), 3H,	(S) 6H,	(M) 2H,
	C-19 CH ₃	C-2! CH ₃	C-27 CH ₃	2 COOCH ₃	2 HCO COCH ₃
(I) (II) (III)	9.29 9.21 9.13	9.23 9.23 9.22	9.23 9.23 9.22	8.04	5.42

The action of acetic anhydride on petilidine in pyridine forms the difficultly crystallizing diacetylpetilidine (II). In a thin layer of Al_2O_3 and $CaSO_4$ (9:1), $R_f=0.82$ in the butylacetate—petroleum ether—methanol (20:20:5) system. IR spectrum: $\nu_{\rm max}$ 1730, 1245, 1030 cm⁻¹. The NMR spectrum exhibited a 6-proton singlet at 8.04 τ . Oxidation of the alkaloid with chromic acid gave a diketone with mp 226°-228° C (III) ($\nu_{\rm max}$ 1708 cm⁻¹), identical with petilininedione. Reduction of the latter by the Huang-Minlon method led to an oxygen-free base which was identical with desdioxotetra-

hydropetilininedione [1]. The identity of the products was shown by the melting point of mixtures and by a comparison of their IR spectra; this shows a structural relationship between petilidine and petilinine. In the mass spectrum of petilidine, as in that of petilinine, the main characteristic peaks are those of the ions with m/e 97, 98, 111, 112, 397, $(M-18)^+$, 400 $(M-15)^+$, and 415 (M^+) .

Consequently, petilidine differs from petilinine only by the configuration of the substituting groups, which was established by a study of the NMR spectra of substances (I), (II), and (II) (table).

The values of the signals of the protons of the 19-methyl group and the two acetyl groups in diacetylpetilidine and diacetylpetilinine are different. This shows a difference in the configurations of the hydroxy groups in petilidine and petilinine. In diacetylpetilidine, unlike diacetylpetilinine, the acetyl group could be present in the β -position at C_6 . Then the signal from the 19-methyl protons should be found at approximately 9.1 τ as in 3 β , 6 β -diacetyldihydroim-perialine. However, this is not the case. Thus, in diacetylpetilidine the acetyl group at C_3 has the β -orientation. This is confirmed by the presence in the NMR spectrum of diacetylpetilidine of a singlet of the 19-methyl group at 9.21 τ , as in the spectrum of 3 β , 6 β -diacetyldihydroimperialine [2]. In addition, the difference in the chemical shifts of the 19-methyl protons in diacetylpetilidine and diacetylpetilinine is 3 Hz. In analogous steroid compounds this difference is 2.5 Hz. [3]. Consequently, the structural formula and configuration (I) may be put forward for petilidine.

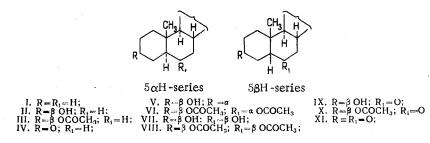
The conditions for recording the spectra have been reported previously [1].

REFERENCES

- 1. R. N. Nuriddinov, B. Babaev, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], 4, no. 4, 1968.
- 2. R. N. Nuriddinov, A. I. Saidkhodzhaev, M. R. Yagudaev, and S. Yu. Yunusov, KhPS [Chemistry of Natural Compounds], this issue, p. 333.
 - 3. R. F. Zurcher, Helv. Chim. Acta, 46, 2054, 1963.

26 April 1968

Institute for the Chemistry of Plant Substances AS UzSSR


UDC 547.944/945

NUCLEAR MAGNETIC RESONANCE SPECTRA OF 5αH-C-NOR-D-HOMOSTEROIDS

R. N. Nuriddinov, A. I. Saidkhodzhaev, M. R. Yagudaev, and S. Yu. Yunusov

Khimiya Prirodnykh Soedinenii, Vol. 4, No. 5, pp. 333-334, 1968

Imperialine is a representative of the $5\alpha H$ - and verticine a representative of the $5\beta H$ -C-nor-D-homosteroid alkaloids [1]. In this paper we give the values of the signals from the C-19, C-21, and C-27 methyl protons found in the NMR spectra of the $5\alpha H$ -series. A comparison of the values of the signals of the $5\alpha H$ -series with the corresponding values for the $5\beta H$ -series [2] has in many cases enabled us to establish a relative displacement of the chemical shifts from the C-19 methyl group in the $5\beta H$ -series into the weak field (table).

